15 research outputs found

    Perception and cognition of cues Used in synchronous Brain–computer interfaces Modify electroencephalographic Patterns of control Tasks

    Get PDF
    A motor imagery (MI)-based brain–computer interface (BCI) is a system that enables humans to interact with their environment by translating their brain signals into control commands for a target device. In particular, synchronous BCI systems make use of cues to trigger the motor activity of interest. So far, it has been shown that electroencephalographic (EEG) patterns before and after cue onset can reveal the user cognitive state and enhance the discrimination of MI-related control tasks. However, there has been no detailed investigation of the nature of those EEG patterns. We, therefore, propose to study the cue effects on MI-related control tasks by selecting EEG patterns that best discriminate such control tasks, and analyzing where those patterns are coming from. The study was carried out using two methods: standard and all-embracing. The standard method was based on sources (recording sites, frequency bands, and time windows), where the modulation of EEG signals due to motor activity is typically detected. The all-embracing method included a wider variety of sources, where not only motor activity is reflected. The findings of this study showed that the classification accuracy (CA) of MI-related control tasks did not depend on the type of cue in use. However, EEG patterns that best differentiated those control tasks emerged from sources well defined by the perception and cognition of the cue in use. An implication of this study is the possibility of obtaining different control commands that could be detected with the same accuracy. Since different cues trigger control tasks that yield similar CAs, and those control tasks produce EEG patterns differentiated by the cue nature, this leads to accelerate the brain–computer communication by having a wider variety of detectable control commands. This is an important issue for Neuroergonomics research because neural activity could not only be used to monitor the human mental state as is typically done, but this activity might be also employed to control the system of interest

    Corrigendum to “Enrichment of Human-Computer Interaction in Brain-Computer Interfaces via Virtual Environments”

    No full text
    Tridimensional representations stimulate cognitive processes that are the core and foundation of human-computer interaction (HCI). Those cognitive processes take place while a user navigates and explores a virtual environment (VE) and are mainly related to spatial memory storage, attention, and perception. VEs have many distinctive features (e.g., involvement, immersion, and presence) that can significantly improve HCI in highly demanding and interactive systems such as brain-computer interfaces (BCI). BCI is as a nonmuscular communication channel that attempts to reestablish the interaction between an individual and his/her environment. Although BCI research started in the sixties, this technology is not efficient or reliable yet for everyone at any time. Over the past few years, researchers have argued that main BCI flaws could be associated with HCI issues. The evidence presented thus far shows that VEs can (1) set out working environmental conditions, (2) maximize the efficiency of BCI control panels, (3) implement navigation systems based not only on user intentions but also on user emotions, and (4) regulate user mental state to increase the differentiation between control and noncontrol modalities

    Mexican Emotional Speech Database Based on Semantic, Frequency, Familiarity, Concreteness, and Cultural Shaping of Affective Prosody

    No full text
    In this paper, the Mexican Emotional Speech Database (MESD) that contains single-word emotional utterances for anger, disgust, fear, happiness, neutral and sadness with adult (male and female) and child voices is described. To validate the emotional prosody of the uttered words, a cubic Support Vector Machines classifier was trained on the basis of prosodic, spectral and voice quality features for each case study: (1) male adult, (2) female adult and (3) child. In addition, cultural, semantic, and linguistic shaping of emotional expression was assessed by statistical analysis. This study was registered at BioMed Central and is part of the implementation of a published study protocol. Mean emotional classification accuracies yielded 93.3%, 89.4% and 83.3% for male, female and child utterances respectively. Statistical analysis emphasized the shaping of emotional prosodies by semantic and linguistic features. A cultural variation in emotional expression was highlighted by comparing the MESD with the INTERFACE for Castilian Spanish database. The MESD provides reliable content for linguistic emotional prosody shaped by the Mexican cultural environment. In order to facilitate further investigations, a corpus controlled for linguistic features and emotional semantics, as well as one containing words repeated across voices and emotions are provided. The MESD is made freely available

    Deep-Learning Method Based on 1D Convolutional Neural Network for Intelligent Fault Diagnosis of Rotating Machines

    No full text
    Fault diagnosis in high-speed machining centers (HSM) is critical in manufacturing systems, since early detection saves a substantial amount of time and money. It is known that 42% of failures in these centers occur in rotatory machineries, such as spindles, in which, the bearings are fundamental elements for effective operation. Nowadays, there are several machine- and deep-learning methods to diagnose the faults. To improve the performance of those traditional machine-learning tools, a deep-learning network that works on raw signals, which do not require previous analysis, has been proposed. The 1D Convolutional Neural Network (CNN) proposed model showed great capacity of adapting to three types of configurations and three different databases, despite a training set with a smaller number of categories. The network still detected faults at early damage stages. Additionally, the low computational cost shows the Deep-Learning Neural Network’s (DLNN) suitability for real-time applications in industry. The proposed structure reached a precision of 99%; real-time processing was around 8 ms per signal, and standard deviation of repeatability was 0.25%

    Desarrollo y uso de la Suite GlassBox para reaprender Ciencias básicas

    No full text
    Se desarrolló una Suite de aplicaciones computacionales nombrada GlassBox, con el propósito de facilitarles a nuestros estudiantes el reaprendizaje de las Ciencias básicas. Con GlassBox, los estudiantes no solo centran su atención en los principios fundamentales, sino que pueden hacer observaciones cualitativas y cuantitativas de los fenómenos, trabajar de forma colaborativa para explorar los límites de los modelos mediante preguntas como “¿qué pasaría sí…?” y tener acceso completo a los componentes internos de estas cajas negras, por ejemplo: al algoritmo, a su implementación computacional y a ejercicios retadores. La Suite GlassBox se desarrolló de agosto del 2015 a julio del 2016. Ahora se adapta su uso dentro y fuera del aula para enriquecer la experiencia de aprendizaje, tanto en preparatoria como en profesional del Tecnológico de Monterrey Campus Querétaro y Ciudad de México a partir del periodo agosto-diciembre 2016.Iniciativa Novu

    Deep-Learning Method Based on 1D Convolutional Neural Network for Intelligent Fault Diagnosis of Rotating Machines

    No full text
    Fault diagnosis in high-speed machining centers (HSM) is critical in manufacturing systems, since early detection saves a substantial amount of time and money. It is known that 42% of failures in these centers occur in rotatory machineries, such as spindles, in which, the bearings are fundamental elements for effective operation. Nowadays, there are several machine- and deep-learning methods to diagnose the faults. To improve the performance of those traditional machine-learning tools, a deep-learning network that works on raw signals, which do not require previous analysis, has been proposed. The 1D Convolutional Neural Network (CNN) proposed model showed great capacity of adapting to three types of configurations and three different databases, despite a training set with a smaller number of categories. The network still detected faults at early damage stages. Additionally, the low computational cost shows the Deep-Learning Neural Network’s (DLNN) suitability for real-time applications in industry. The proposed structure reached a precision of 99%; real-time processing was around 8 ms per signal, and standard deviation of repeatability was 0.25%

    Acoustic Characterization of Edzna: A Measurement Dataset

    No full text
    Abstract Acoustic characterizations of different locations are necessary to obtain relevant information on their behavior, particularly in the case of places that have not been fully understood or which purpose is still unknown since they are from cultures that no longer exist. Acoustic measurements were conducted in the archaeological zone of Edzna to obtain useful information to better understand the customs and practices of its past inhabitants. The information obtained from these acoustic measurements is presented in a dataset, which includes measurements taken at 32 points around the entire archaeological zone, with special attention given to the Main Plaza, the Great Acropolis, and the Little Acropolis. Two recording systems were used for this purpose: a microphone and a binaural head. As a result, a measurement database with the following characteristics was obtained: it comprises a total of 32 measurement points with 4 different sound source positions. In total, there are 297 files divided into separate folders. The sampling frequency used was 96 kHz, and the files are in mat format
    corecore